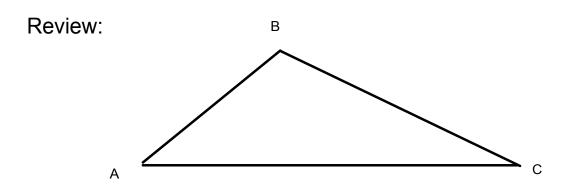

DO NOW:


Find the endpoints of a triangle with the following midpoints.

A(1, -4)

B (2, 4)

C (6, -2)

- a.) Draw an angle bisector for angle B
- b.) Draw a perpendicular bisector of side AC
- c.) Draw a median from angle A to side BC
- d.) Draw an altitude from angle C to side AB

Unit 8 Day 2: Segments of Triangles Points of Concurrency (6.1-6.4)

Find your 2 o'clock partner and find a seat:)

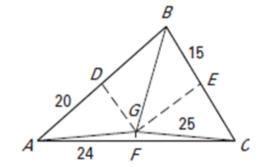
Today's I Can Statements:

ST-1: I can identify different segments in a triangle.

ST-3: I can use coordinates to prove geometric theorems algebraically.

Point of C	concurrency:	The point where	
or more _		, or	
intersect	•		

CIRCUMCENTER

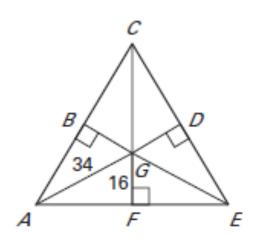

The	of a triangle	
intersect at a point that is		
of the triangle.	. R	

If \overline{PD} , \overline{PE} , and \overline{PF} are perpendicular bisectors then PA = PB = PC.

Example

USING CONCURRENCY In the diagram, the perpendicular bisectors of $\triangle ABC$ meet at point G and are shown in blue. Find the indicated measure.

- **13.** Find *AG*.
- **14.** Find *BD*.
- **15.** Find *CF*.
- **16.** Find *BG*.
- **17.** Find *CE*.
- **18.** Find *AC*.

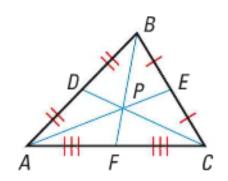

INCENTER

The _____ of a triangle intersect at a point that is ____ of the triangle.

If \overline{AP} , \overline{BP} , and \overline{CP} are angle bisectors of $\triangle ABC$, then PD = PE = PF.

Example

Point G is the incenter of $\triangle ACE$. Find BG.



b.) Find AB.

CENTROID

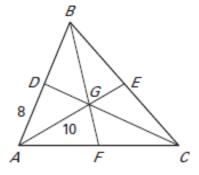
The _____ of a triangle intersect at a point that ____ of the opposite side.

The medians of $\triangle ABC$ meet at P and $AP = \frac{2}{3}AE$, $BP = \frac{2}{3}BF$, and $CP = \frac{2}{3}CD$.

Example

G is the centroid of $\triangle ABC$, AD=8, AG=10, and CD=18. Find the length of the segment.

1. \overline{BD}

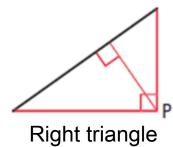

2. AB

EG

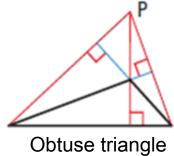
4. \overline{AE}

5. *CG*

6. \overline{DG}


ORTHOCENTER

The point of concurrency of the _____ the triangle (where the three altitudes intersect)



Acute triangle

P is <u>inside</u> triangle

P is on triangle

P is outside triangle

Tonight's Assignment: Page 315 #3-6,11-14,29-32 Page 324 #3-14, 31-36

Remember:

Segments of Triangles Quiz will be:

Wednesday 1/29 Thursday 1/30